# Workshop 'Singularity formation and long-time behavior in dispersive PDEs'

Date:

March 14 - 18, 2016

Location:

Mathematical Institute, University of Bonn, Germany

Lipschitz Lecture Hall, Endenicher Allee 60, 53115 Bonn

Speakers:

M. Beceanu (UC Berkeley), P. Bizoń (U Krakow), N. Burq (U Paris 11), R. Côte (Palaiseau), P. D' Ancona (U Rome), B. Dodson (JHU Baltimore), P. Gérard (U Paris 11), Z. Guo (Monash), S. Gustafson (U British Columbia), B. Harrop-Griffiths (Courant), S. Herr (U Bielefeld), D. Hundertmark (KIT), A. Ionescu (Princeton), R. Killip (UCLA), J. Krieger (EPFL), A. Lawrie (UC Berkeley), E. Lenzmann (U Basel), J. Li (Beijing Normal), B. Liu (BICMR), J. Lührmann (ETH Zurich), Y. Martel (Palaiseau), J. Marzuola (U North Carolina), D. Mendelson (IAS), F. Merle (U Cergy-Pontoise), J. Metcalfe (U North Carolina), T. Mizumachi (U Hiroshima), C. Muñoz (U Chile), K. Nakanishi (U Osaka), S.-J. Oh (UC Berkeley), T. Oh (U Edinburgh), F. Planchon (U Nice), O. Pocovnicu (Heriot-Watt), S. Roudenko (George Washington), J.C. Saut (U Paris 11), B. Schörkhuber (U Vienna), S. Selberg (U Bergen), S. Shahshahani (U Michigan), C. Sogge (JHU Baltimore), V. Sohinger (ETH Zurich), M. Struwe (ETH Zurich), J. Szeftel (U Paris 6), D. Tataru (UC Berkeley), N. Tzvetkov (U Cergy-Pontoise), L. Vega (U. Bilbao), H. Zaag (U Paris 13).

Sponsors:

CRC 1060,

Alexander von Humboldt-Foundation

Support for young scientists:

Registration is closed.

Dispersive partial differential equations describe a variety of phenomena ranging from general relativity and quantum field theory to applied physics, nonlinear optics, and water waves. But also as a purely mathematical discipline, the field has become a cornerstone of modern PDE theory. In the last 15 years there was tremendous progress in the mathematical understanding of dispersive equations. We are now in a position to attack difficult large-data problems and the development starts to move towards the so far largely untouched area of supercritical equations. Questions of high interest concern singularity formation in finite time, long-time behavior of large-data solutions, soliton resolution, nonperturbative methods, and the interplay with other areas of mathematics such as harmonic analysis, spectral theory, and numerical simulations.